Linear Feature Encoding for Reinforcement Learning
نویسندگان
چکیده
Feature construction is of vital importance in reinforcement learning, as the quality of a value function or policy is largely determined by the corresponding features. The recent successes of deep reinforcement learning (RL) only increase the importance of understanding feature construction. Typical deep RL approaches use a linear output layer, which means that deep RL can be interpreted as a feature construction/encoding network followed by linear value function approximation. This paper develops and evaluates a theory of linear feature encoding. We extend theoretical results on feature quality for linear value function approximation from the uncontrolled case to the controlled case. We then develop a supervised linear feature encoding method that is motivated by insights from linear value function approximation theory, as well as empirical successes from deep RL. The resulting encoder is a surprisingly effective method for linear value function approximation using raw images as inputs.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملAn Evolutionary Feature Discovery Method for Reinforcement Learning
Using linear methods for reinforcement learning problems requires designing efficient features. However, designing features often requires having ample knowledge about the problem domain. When dealing with complex problem domains, coming up with efficient feature sets often requires a trial and error process which can prove difficult or inefficient. We present an evolutionary algorithm for gene...
متن کاملDeep learning of visual control policies
This paper discusses the effectiveness of deep auto-encoding neural nets in visual reinforcement learning (RL) tasks. We describe a new algorithm and give results on succesfully learning policies directly on synthesized and real images without a predefined image processing. Furthermore, we present a thorough evaluation of the learned feature spaces.
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملLearning Visual Feature Spaces for Robotic Manipulation with Deep Spatial Autoencoders
Reinforcement learning provides a powerful and flexible framework for automated acquisition of robotic motion skills. However, applying reinforcement learning requires a sufficiently detailed representation of the state, including the configuration of task-relevant objects. We present an approach that automates state-space construction by learning a state representation directly from camera ima...
متن کامل